1BZ0

HEMOGLOBIN A (HUMAN, DEOXY, HIGH SALT)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.167 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)-->alpha bulge.

Kavanaugh, J.S.Moo-Penn, W.F.Arnone, A.

(1993) Biochemistry 32: 2509-2513

  • DOI: https://doi.org/10.1021/bi00061a007
  • Primary Citation of Related Structures:  
    1BZ0

  • PubMed Abstract: 

    Hemoglobin Catonsville is a mutation of human hemoglobin (an alpha 2 beta 2 tetramer) in which a glutamate residue is inserted into the first turn of a highly conserved 3(10) helix (the C helix) of each alpha subunit. In theory, amino acid insertions (or deletions) in protein helices can be accommodated via two distinct mechanisms. One, termed the register shift mechanism, preserves the geometry of the helix while requiring all of the residues on one flank of the insertion site to rotate by 100 degrees in the case of an alpha helix or by 120 degrees in the case of a 3(10) helix. The other, termed the bulge (or indentation) mechanism, distorts the local geometry of the helix but does not alter the helix register. High-resolution X-ray diffraction analysis of deoxyhemoglobin Catonsville shows that the inserted residue is accommodated as a bulge, demonstrating that this is a viable mechanism. (In contrast, no such evidence is yet available for the register shift mechanism.) More specifically, the insertion converts one turn of the C helix from 3(10) geometry to alpha helix-like geometry, raising the possibility that a common mechanism for accommodating insertions and deletions within helices may involve localized interconversions between 3(10), alpha, and pi helical structures.


  • Organizational Affiliation

    Department of Biochemistry, University of Iowa, Iowa City 52242.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (HEMOGLOBIN ALPHA CHAIN)
A, C
141Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P69905 (Homo sapiens)
Explore P69905 
Go to UniProtKB:  P69905
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP69905
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (HEMOGLOBIN BETA CHAIN)
B, D
146Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P68871 (Homo sapiens)
Explore P68871 
Go to UniProtKB:  P68871
GTEx:  ENSG00000244734 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP68871
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.167 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 63.3α = 90
b = 83.6β = 99.4
c = 53.8γ = 90
Software Package:
Software NamePurpose
PROLSQrefinement
SDMSdata reduction
SDMSdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-11-11
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Data collection, Database references, Derived calculations, Refinement description