1DPG

GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution.

Rowland, P.Basak, A.K.Gover, S.Levy, H.R.Adams, M.J.

(1994) Structure 2: 1073-1087

  • DOI: https://doi.org/10.1016/s0969-2126(94)00110-3
  • Primary Citation of Related Structures:  
    1DPG

  • PubMed Abstract: 

    Glucose 6-phosphate dehydrogenase (G6PD) is the first enzyme of the pentose phosphate pathway. Normally the pathway is synthetic and NADP-dependent, but the Gram-positive bacterium Leuconostoc mesenteroides, which does not have a complete glycolytic pathway, also uses the oxidative enzymes of the pentose phosphate pathway for catabolic reactions, and selects either NAD or NADP depending on the demands for catabolic or anabolic metabolism. The structure of G6PD has been determined and refined to 2.0 A resolution. The enzyme is a dimer, each subunit consisting of two domains. The smaller domain is a classic dinucleotide-binding fold, while the larger one is a new beta+ alpha fold, not previously seen, with a predominantly antiparallel nine-stranded beta-sheet. There are significant structural differences in the coenzyme-binding domains of the two subunits, caused by Pro 149 which is cis in one subunit and trans in the other. The structure has allowed us to propose the location of the active site and the coenzyme-binding site, and suggests the role of many of the residues conserved between species. We propose that the conserved Arg46 would interact with both the adenine ring and the 2'-phosphate of NADP. Gln47, which is not conserved, may contribute to the change from NADP to dual coenzyme specificity. His178, in a nine-residue peptide conserved for all known sequences, binds a phosphate in the active site pocket. His240 is the most likely candidate for the base to oxidize the 1-hydroxyl group of the glucose 6-phosphate substrate.


  • Organizational Affiliation

    University of Oxford, Laboratory of Molecular Biophysics, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLUCOSE 6-PHOSPHATE DEHYDROGENASE
A, B
485Leuconostoc mesenteroidesMutation(s): 1 
Gene Names: G6PD
EC: 1.1.1.49 (PDB Primary Data), 1.1.1.363 (UniProt)
UniProt
Find proteins for P11411 (Leuconostoc mesenteroides)
Explore P11411 
Go to UniProtKB:  P11411
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP11411
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.71α = 90
b = 105.71β = 90
c = 224.31γ = 120
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
MOSFLMdata reduction
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-03-08
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Database references, Derived calculations, Other
  • Version 1.4: 2024-02-07
    Changes: Data collection