1HCK

HUMAN CYCLIN-DEPENDENT KINASE 2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.272 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design.

Schulze-Gahmen, U.De Bondt, H.L.Kim, S.H.

(1996) J Med Chem 39: 4540-4546

  • DOI: https://doi.org/10.1021/jm960402a
  • Primary Citation of Related Structures:  
    1HCK, 1HCL

  • PubMed Abstract: 

    Inhibition of the cell cycle is widely considered as a new approach toward treatment for diseases caused by unregulated cell proliferation, including cancer. Since cyclin-dependent kinases (CDKs) are key enzymes of cell cycle control, they are promissing targets for the design and discovery of drugs with antiproliferative activity. The detailed structural analysis of CDK2 can provide valuable information for the design of new ligands that can bind in the ATP binding pocket and inhibit CDK2 activity. For this objective, the crystal structures of human CDK2 apoenzyme and its ATP complex were refined to 1.8 and 1.9 A, respectively. The high-resolution refinement reveals 12 ordered water molecules in the ATP binding pocket of the apoenzyme and five ordered waters in that of the ATP complex. Despite a large number of hydrogen bonds between ATP-phosphates and CDK2, binding studies of cyclic AMP-dependent protein kinase with ATP analogues show that the triphosphate moiety contributes little and the adenine ring is most important for binding affinity. Our analysis of CDK2 structural data, hydration of residues in the binding pocket of the apoenzyme, flexibility of the ligand, and structural differences between the apoenzyme and CDK2-ATP complex provide an explanation for the results of earlier binding studies with ATP analogues and a basis for future inhibitor design.


  • Organizational Affiliation

    Department of Chemistry, University of California, Berkeley 94720, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HUMAN CYCLIN-DEPENDENT KINASE 2298Homo sapiensMutation(s): 0 
EC: 2.7.1.37 (PDB Primary Data), 2.7.11.22 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P24941 (Homo sapiens)
Explore P24941 
Go to UniProtKB:  P24941
PHAROS:  P24941
GTEx:  ENSG00000123374 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP24941
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.272 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 72.82α = 90
b = 72.66β = 90
c = 54.07γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
R-AXISdata reduction
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-12-07
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations, Other