6ELX

Oryza sativa DWARF14


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.177 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.161 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

The elusive ligand complexes of the DWARF14 strigolactone receptor.

Carlsson, G.H.Hasse, D.Cardinale, F.Prandi, C.Andersson, I.

(2018) J Exp Bot 69: 2345-2354

  • DOI: https://doi.org/10.1093/jxb/ery036
  • Primary Citation of Related Structures:  
    6ELX

  • PubMed Abstract: 

    Strigolactones, a group of terpenoid lactones, control many aspects of plant growth and development, but the active forms of these plant hormones and their mode of action at the molecular level are still unknown. The strigolactone protein receptor is unusual because it has been shown to cleave the hormone and supposedly forms a covalent bond with the cleaved hormone fragment. This interaction is suggested to induce a conformational change in the receptor that primes it for subsequent interaction with partners in the signalling pathway. Substantial efforts have been invested into describing the interaction of synthetic strigolactone analogues with the receptor, resulting in a number of crystal structures. This investigation combines a re-evaluation of models in the Protein Data Bank with a search for new conditions that may permit the capture of a receptor-ligand complex. While weak difference density is frequently observed in the binding cavity, possibly due to a low-occupancy compound, the models often contain features not supported by the X-ray data. Thus, at this stage, we do not believe that any detailed deductions about the nature, conformation, or binding mode of the ligand can be made with any confidence.


  • Organizational Affiliation

    Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan, Uppsala, Sweden.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Strigolactone esterase D14
A, B
267Oryza sativa Japonica GroupMutation(s): 0 
Gene Names: D14D88HTD2Os03g0203200LOC_Os03g10620
EC: 3.1
UniProt
Find proteins for Q10QA5 (Oryza sativa subsp. japonica)
Explore Q10QA5 
Go to UniProtKB:  Q10QA5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ10QA5
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MPD
Query on MPD

Download Ideal Coordinates CCD File 
G [auth B](4S)-2-METHYL-2,4-PENTANEDIOL
C6 H14 O2
SVTBMSDMJJWYQN-YFKPBYRVSA-N
MRD
Query on MRD

Download Ideal Coordinates CCD File 
C [auth A](4R)-2-METHYLPENTANE-2,4-DIOL
C6 H14 O2
SVTBMSDMJJWYQN-RXMQYKEDSA-N
GOL
Query on GOL

Download Ideal Coordinates CCD File 
D [auth A]
E [auth A]
F [auth A]
H [auth B]
I [auth B]
D [auth A],
E [auth A],
F [auth A],
H [auth B],
I [auth B],
J [auth B],
K [auth B]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.177 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.161 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 48.12α = 90
b = 88.64β = 90
c = 118.94γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2018-05-09
    Type: Initial release
  • Version 1.1: 2024-01-17
    Changes: Data collection, Database references, Refinement description