2WPQ

Salmonella enterica SadA 479-519 fused to GCN4 adaptors (SadAK3, in- register fusion)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.224 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

A Coiled-Coil Motif that Sequesters Ions to the Hydrophobic Core.

Hartmann, M.D.Ridderbusch, O.Zeth, K.Albrecht, R.Testa, O.Woolfson, D.N.Sauer, G.Dunin-Horkawicz, S.Lupas, A.N.Alvarez, B.H.

(2009) Proc Natl Acad Sci U S A 106: 16950

  • DOI: https://doi.org/10.1073/pnas.0907256106
  • Primary Citation of Related Structures:  
    2WPQ, 2WPR, 2WPS, 2WPY, 2WPZ, 2WQ0, 2WQ1, 2WQ2, 2WQ3

  • PubMed Abstract: 

    Most core residues of coiled coils are hydrophobic. Occasional polar residues are thought to lower stability, but impart structural specificity. The coiled coils of trimeric autotransporter adhesins (TAAs) are conspicuous for their large number of polar residues in position d of the core, which often leads to their prediction as natively unstructured regions. The most frequent residue, asparagine (N@d), can occur in runs of up to 19 consecutive heptads, frequently in the motif [I/V]xxNTxx. In the Salmonella TAA, SadA, the core asparagines form rings of interacting residues with the following threonines, grouped around a central anion. This conformation is observed generally in N@d layers from trimeric coiled coils of known structure. Attempts to impose a different register on the motif show that the asparagines orient themselves specifically into the core, even against conflicting information from flanking domains. When engineered into the GCN4 leucine zipper, N@d layers progressively destabilized the structure, but zippers with 3 N@d layers still folded at high concentration. We propose that N@d layers maintain the coiled coils of TAAs in a soluble, export-competent state during autotransport through the outer membrane. More generally, we think that polar motifs that are both periodic and conserved may often reflect special folding requirements, rather than an unstructured state of the mature proteins.


  • Organizational Affiliation

    Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TRIMERIC AUTOTRANSPORTER ADHESIN FRAGMENT
A, B, C
99Salmonella enterica subsp. enterica serovar TyphimuriumMutation(s): 0 
UniProt
Find proteins for Q8ZL64 (Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720))
Explore Q8ZL64 
Go to UniProtKB:  Q8ZL64
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8ZL64
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.224 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 26.022α = 90
b = 36.967β = 92.73
c = 178.445γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-11-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2017-03-29
    Changes: Refinement description
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description