8DK7

Crystal structure of theophylline aptamer soaked with TAL2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.46 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.246 
  • R-Value Observed: 0.247 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Discovery of small molecules that target a tertiary-structured RNA.

Menichelli, E.Lam, B.J.Wang, Y.Wang, V.S.Shaffer, J.Tjhung, K.F.Bursulaya, B.Nguyen, T.N.Vo, T.Alper, P.B.McAllister, C.S.Jones, D.H.Spraggon, G.Michellys, P.Y.Joslin, J.Joyce, G.F.Rogers, J.

(2022) Proc Natl Acad Sci U S A 119: e2213117119-e2213117119

  • DOI: https://doi.org/10.1073/pnas.2213117119
  • Primary Citation of Related Structures:  
    8D28, 8D29, 8D2A, 8D2B, 8D5L, 8D5O, 8DK7

  • PubMed Abstract: 

    There is growing interest in therapeutic intervention that targets disease-relevant RNAs using small molecules. While there have been some successes in RNA-targeted small-molecule discovery, a deeper understanding of structure-activity relationships in pursuing these targets has remained elusive. One of the best-studied tertiary-structured RNAs is the theophylline aptamer, which binds theophylline with high affinity and selectivity. Although not a drug target, this aptamer has had many applications, especially pertaining to genetic control circuits. Heretofore, no compound has been shown to bind the theophylline aptamer with greater affinity than theophylline itself. However, by carrying out a high-throughput screen of low-molecular-weight compounds, several unique hits were identified that are chemically distinct from theophylline and bind with up to 340-fold greater affinity. Multiple atomic-resolution X-ray crystal structures were determined to investigate the binding mode of theophylline and four of the best hits. These structures reveal both the rigidity of the theophylline aptamer binding pocket and the opportunity for other ligands to bind more tightly in this pocket by forming additional hydrogen-bonding interactions. These results give encouragement that the same approaches to drug discovery that have been applied so successfully to proteins can also be applied to RNAs.


  • Organizational Affiliation

    Novartis Institutes for BioMedical Research, San Diego, CA 92121.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FAB light chain
A, E
214Homo sapiensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
FAB heavy chain
B, D
229Homo sapiensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains LengthOrganismImage
RNA (34-MER)
C, F
34synthetic construct
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.46 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.246 
  • R-Value Observed: 0.247 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 38.392α = 83.53
b = 90.115β = 89.4
c = 93.751γ = 84.57
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Other private--

Revision History  (Full details and data files)

  • Version 1.0: 2022-11-30
    Type: Initial release
  • Version 1.1: 2023-10-25
    Changes: Data collection, Refinement description